有三个平面方程 , 什么时候三个平面交于一点 , 什么时候
设法向量为n1,n2,n3 , 充要条件是n1xn2·n3≠0
三个直径一样的圆柱叠一起可以得到几个圆柱?
相交部分是个球形 , 这是个误区 。通常把三个圆柱联立起来 , 这样得出来确实是球面方程 , 但实际上是说明这三个圆柱相交的公共点在球面上 , 这里的圆柱一定是非中空的;我举个简单例子来说明 , 比如两个相交圆的公共部分 , 显然联立方程后得出来是点 , 但是这里的圆当然指的是圆面啦 , 那两个相交点只是相交部分的两个特殊点而已 。因此写得严密点话 , 把圆柱联立起来的时候要注意圆柱方程应该写成:x^2 y^2<=r^2等等 。写得啰嗦了点 , 不过你应该明白什么意思了的 。你可以两两相交来理解这个图形的大致样子 , 想象的话很难想的 。另外体积我就不帮求了 , 你已经画出图形来了 , 这图是个十二面围成的 , 只要找到一个合适的剖面 , 这样求积分的时候就可以找到上下限 , 结果就出来了 。第一个圆柱表面积 s侧:6*3.14*5=94.2平方厘米 r:6/2=3厘米 s底:3*3*3.14=28.26平方厘米 s表:94.2 28.26*2=150.72平方厘米 第二个圆柱表面积 s侧:4*3.14*5=62.8平方厘米 r:4/2=2厘米 s底:2*2*3.14=12.56平方厘米(6 4 2)*3.14*5=188.4(平方厘米)
(2/2*3.14)*(2/2*3.14)=6.28(平方厘米)
(4/2*3.14)*(4/2*3.14)=12.56(平方厘米)
(6/2*3.14)*(6/2*3.14)=18.84(平方厘米)
188.4 (6.28 12.56 18.84)*2=263.76(平方厘米)
263.76-18.84-(12.56 6.28)*2=207.24(平方厘米)
高等数学线性代数 这个图像与解之间的关系是什么?
如个平面有交点 , 说明 , 那么和增广矩阵的秩相等
矩阵A一列分别是三个平面向量(一个向量就可以确定一个平面)
图A三个平面的法向量两两线性无关 , 所以r(A)=3,且有一个交点 。增广矩阵秩也是3
图B C D 的三个平面法向量在一个平面 , 所以r(A)=2
图B三个平面有公共交点(是条直线),有解 , 所以增广矩阵秩是2
图C D三平面无公共交点 , 无解 , 增广矩阵秩是2 1=3.
三直线平行(不重合)的情况是图C.
r(A)=增广矩阵的秩=1时 , 首先秩相等说明有解 , 即存在公共交点 , 其次r(A)=1说明三个平面平行(法向量平行那么平面平行) , 所以只能是三个平面重合 , 三条直线就是整个平面(你说不存在貌似也可以说的过去 。。。但总归都不严谨)
正方体相交于同一顶点的三个面的特征
【三个平面相交有几条交线/有三个平面方程,什么时候三个平面交于一点,什么时候】 如图 ,
根据正方体展开图的特征 , 相交于同一点的三个最大数是3、4、6.
3 4 6=13 ,
答:相交于同一顶点的3个面上的数之和最大是13.
- 穿过地心,与地球表面积相交于两点的假想地球旋转轴叫做______,此两点叫做______,其中,指向北极星附近!地心深度多少
- 三个瘦腿瑜伽 夏季最有效的瘦腿方法
- 腿部减肥最有效的三个方法
- 这三个地方长痣,中年过后资产千万
- 三个瘦腿小偏方 让你的腿部更瘦更修长
- 小腿粗壮怎么办?三个瘦腿动作专减小腿肌
- 三个瘦腿小窍门 快速练成修长美腿
- 瘦腿最有效的三个妙方
- 三个腿部减肥方法 重塑纤细玉腿
- 三条直线相交可以确定几个平面《三个平面两两相交于三条直线,讨论这三条直线的关系》