吸附|年终巨献:与人类“同居”两年,改变世界的新冠病毒究竟为何物丨奇点深度( 四 )


第二个应对方案是 结合特定位点的中和抗体 。 虽然大部分中和抗体的活性都有所下降[23] , 但是已经有研究表明 ,结合S蛋白RBD位点IV的中和抗体(Sotrovimab和罗米司韦单抗)的活性 , 几乎不受Omicron变异株突变位点的影响[32] 。 这也是安巴韦单抗/罗米司韦单抗组合对Omicron变异株保持中和活性的原因之一 。
第三个应对武器是 小分子药物 。 已有多个实验室的研究表明 , 已经获得FDA批准获得紧急使用授权的三种小分子药物对所有当前的VOC活性保持不变[33,34] 。
有了这“三板斧” , 人类与新冠病毒之间的战争 , 也并非全无胜算 。
总的来说 , 随着科学家对新冠病毒和新冠肺炎认知的加深 , 我们逐渐能摸清楚新冠病毒的弱点 , 最终大概率能找到克敌制胜的突破口 。 或许很快人类就可以与新冠病毒“和平共处” 。
延伸阅读
参考文献:
[1].https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[2].Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses[J]. Trends in microbiology, 2016, 24(6): 490-502.
[3].Yang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development[J]. Nature Reviews Microbiology, 2021, 19(11): 685-700.
[4].Zaki A M, Van Boheemen S, Bestebroer T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia[J]. New England Journal of Medicine, 2012, 367(19): 1814-1820.
[5].Jackson C B, Farzan M, Chen B, et al. Mechanisms of SARS-CoV-2 entry into cells[J]. Nature Reviews Molecular Cell Biology, 2022, 23(1): 3-20.
[6].Forni D, Cagliani R, Clerici M, Sironi M. Molecular Evolution of Human Coronavirus Genomes. Trends Microbiol. 2017;25(1):35-48. doi:10.1016/j.tim.2016.09.001
[7].Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Science China Life Sciences, 2020, 63(3): 457-460.
[8].Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. nature, 2020, 579(7798): 270-273.
[9].Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807): 215-220.
[10].Siddiqi H K, Mehra M R. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal[J]. The journal of heart and lung transplantation, 2020, 39(5): 405.
[11].Hashimoto Y, Suzuki T, Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: a historical review[J]. Molecular Psychiatry, 2022: 1-10.
[12].Dougan M, Nirula A, Azizad M, et al. Bamlanivimab plus etesevimab in mild or moderate Covid-19[J]. New England Journal of Medicine, 2021, 385(15): 1382-1392.
[13]. Weinreich D M, Sivapalasingam S, Norton T, et al. REGEN-COV antibody combination and outcomes in outpatients with Covid-19[J]. New England Journal of Medicine, 2021.
[14].Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab[J]. New England Journal of Medicine, 2021.
[15].https://www.gsk.com/en-gb/media/press-releases/gsk-and-vir-biotechnology-announce-continuing-progress-of-the-comet-clinical-development-programme-for-sotrovimab/
[17].Brodin P. Immune determinants of COVID-19 disease presentation and severity[J]. Nature Medicine, 2021, 27(1): 28-33.
[18].Azkur A K, Akdis M, Azkur D, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19[J]. Allergy, 2020, 75(7): 1564-1581.
[19].R?ltgen K, Boyd S D. Antibody and B cell responses to SARS-CoV-2 infection and vaccination[J]. Cell Host & Microbe, 2021, 29(7): 1063-1075.
[20].Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection[J]. Nature, 2020, 584(7819): 115-119.