▎药明康德内容团队编辑
2022年7月 , DeepMind公司与欧洲生物信息研究所(EMBL-EBI)的合作团队公布了生物学领域的一项
重大飞跃
。 他们利用人工智能(AI)系统AlphaFold预测出超过100万个物种的2.14亿个蛋白质结构 , 几乎涵盖了地球上所有已知蛋白质 。 而近日 , 科技公司Meta宣布 , 其
ESMFold
成功预测了超过6亿个蛋白质三维结构 , 包含大量前所未见的结构 。 两个团队均把包含如此巨量蛋白质结构的数据库向全球的科研人员免费开放 , 将研究成果进行了完全的共享 。
许多科学家和生物医药公司的研究员兴奋地表示 , 这一系列突破将加速新药开发 , 并为基础科学带来全新革命 。 与此同时 , 质疑的声音也不在少数 , 很多人认为这只是一场炒作 。 那么 , 像AlphaFold这样的AI工具 , 对于新药开发究竟有怎样的意义?它真的能够加速新药开发吗?
文章图片
图片来源:123RF
AlphaFold在加速药物开发的过程中的价值和局限性
要回答这个问题 , 我们首先需要了解一下常见的药物一般是通过何种策略开发出来的 。
蛋白质是药物开发的热门靶标 , 因为它能控制许多人体活动的进行 , 例如抗体攻击病原体 , 通过各种酶执行细胞过程 , 或通过信使分子(如胰岛素和生长激素)发出信号 。 许多人类严重疾病背后的原因是由于蛋白质的功能失调 。 如果要让这些功能失调的蛋白质回到“正轨” , 就需要开发出能够准确识别这些“问题蛋白”并牢牢地与之结合的药物 , 然后发挥其治疗作用 。
为了更好地设计出可以与目标蛋白结合的药物 , 了解目标蛋白结构就显得极为重要 。 我们得先摸清这个目标蛋白上有哪些位点有与药物分子结合的可能 , 并设计出与这些位点能够契合的药物——就像为一块边缘不规则的拼图设计能够与之匹配的另一块拼图 。
科学家们从上百万甚至上亿种化合物中 , 通过层层筛选 , 发现能够与疾病相关的蛋白相结合的先导化合物 , 再进行逐步优化 , 最终确定少数几个候选药物进入临床试验 。 这是个耗时耗力的过程 , 如果能够根据目标蛋白的特征直接设计出候选药物分子 , 这将大幅度加快新药开发的前期步骤并降低成本 。
文章图片
图片来源:123RF
现在 , AlphaFold实现了研究人员在几年前几乎无法想象的蛋白结构获取速度 。 在它出现之前 , 科学家们解析的蛋白结构只覆盖了17%的人类蛋白序列 。 而它出现后 , 98.5%的人类蛋白的结构已被其预测出来 , 其中58%的氨基酸的结构位置为可信预测 , 36%的氨基酸的结构预测有很高的置信度 。 也就是说 , 进行药物开发时需要完成的这张拼图 , 其中目标蛋白那一半的绘制速度有了飞跃性的提升 , 且准确性十分有保证 。
新药开发领域的专家表示 , 这一庞大且准确的数据库能够让研究人员将更多的精力投入到确认蛋白结构的细节上面 , 这是很多靶向药物能否成功的关键 。 研究人员不再需要问“蛋白结构是什么样的?” , 而是转而去回答“我们有的蛋白结构有多大作用?”的问题 。 此外 , 这个数据库能够扩展可以成药的基因组位点范围 , 大幅度增加了科学家们发现创新药物过程中拥有的选项 。
除此以外 , 公开可用的AlphaFold还为以前无法接触此类科学的研究人员提供了极大的便利 。 对于资源不足的国家的科研人员来说 , 有了计算生物学 , 不必拥有如何获得蛋白质结构的知识和进行研究的资源 , 只需一台电脑甚至一台手机也能获得所需的结果了 。
- 心理测试:你觉得哪个图片最美,测出你的疑心病到底有多重
- 心理测试:你第一眼喜欢哪栋豪宅,测出你从来都不缺什么
- 心理测试:选一所让你有安全感的房子,测出你现在真实的心理状态
- 心理测试:选出你最喜欢的花朵,测出你的孩子骨子里有多叛逆
- 心理测试:你要向哪位仙女许愿,测出你的什么好运就要到来了
- 心理测试:4个戒指选个喜欢的,测出你与多大的男人结婚会更幸福
- 预防刷牙出血的小技巧,很实用,建议收藏
- 我国2.67亿老年人,同时患2种或以上慢病,该如何预防?
- 科学喝茶,方能达到预期的养生效果,一文学习下
- 预防便秘促使减肥补钙,酥香粉糯入口松化,绝佳的饭后甜点