常见勾股数列表 常用勾股数有哪些


常用的勾股数最简单的勾股弦数是3、4、5,其他如5、12、13;7、24、25;……
任意设定一个自然数(不小于3)当作勾数(或者股数),都可以根据下面的通项公式求出股数(或者勾数)和弦数;给定一个自然数当作弦数(必须是4k+1形的质数或者其倍数),也都可以求出勾数和股数:
a=m2–n2,
b=2mn,
c=m2+n2
(请参阅本人在百度文库发表的文章《勾股弦数》)
勾股数有哪些常用的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等等 。
勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数 。依据的是勾股定理 。勾股定理是人类早期发现并证明的重要数学定理之一 。
勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方 。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边) 。
据《周髀算经》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素 。
古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541) 。
【常见勾股数列表 常用勾股数有哪些】扩展资料
勾股定理的证明
一、赵爽勾股圆方图证明法
中国三国时期赵爽为证明勾股定理作“勾股圆方图”即“弦图”,按其证明思路,其法可涵盖所有直角三角形,为东方特色勾股定理无字证明法 。2002年第24届国际数学家大会(ICM)在北京召开 。中国邮政发行一枚邮资明信片,邮资图就是这次大会的会标—中国古代证明勾股定理的赵爽弦图 。
二、刘徽“割补术”证明法
中国魏晋时期伟大数学家刘徽作《九章算术注》时,依据其“割补术”为证勾股定理另辟蹊径而作“青朱出入图” 。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂 。开方除之,即弦也 。”
其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方 。将朱方、青方两个正方形对齐底边排列,再进行割补—以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长 。
参考资料来源:百度百科-勾股数
常见勾股数列表
3,4,5
5,12,13
7,24,25
9,40,41
11,60,61
……
2n+1,2n2+2n,2n2+2n+1
看一组数是否为勾股数,首先除去最大公约数,再看较大的两个数是否相差1,且较大的两数之和是最小数的平方 。
例如:39,252,255,首先除去最大公约数3,变成13,84,85,再看较大的两个数84,85相差1,且84,85之和是169恰好是最小数13的平方,因此39,252,255是一组勾股数 。
扩展资料
1、当a为大于1的奇数2n+1时,b=2n2+2n, c=2n2+2n+1 。
实际上就是把a的平方数拆成两个连续自然数,例如:
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)[1]
... ...
由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的 。
2、当a为大于4的偶数2n时,b=n2-1, c=n2+1
也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
n=6时(a,b,c)=(12,35,37)

勾股数有哪些
1、常见组合:
3,4,5 : 勾三股四弦五
5,12,13 : 5·21(12)记一生(13)
6,8,10: 连续的偶数
2、特殊组合:
连续的勾股数只有3,4,5
连续的偶数勾股数只有6,8,10
勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数 。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a2+b2=c2) 。
扩展资料:
一、公式
a=m,b=(m^2 / k - k) / 2,c=(m^2 / k + k) / 2 ①
其中m ≥3
1、当m确定为任意一个 ≥3的奇数时,k={1,m^2的所有小于m的因子}
2、当m确定为任意一个 ≥4的偶数时,k={m^2 / 2的所有小于m的偶数因子}
二、常见组合套路
1、当a为大于1的奇数2n+1时,b=2n2+2n, c=2n2+2n+1 。
实际上就是把a的平方数拆成两个连续自然数,例如:
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)
2、当a为大于4的偶数2n时,b=n2-1, c=n2+1
也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
n=6时(a,b,c)=(12,35,37)
参考资料来源:百度百科-勾股数

勾股数有哪些
1、常用的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等等 。
2、勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数 。勾股数的依据是勾股定理 。勾股定理是人类早期发现并证明的重要数学定理之一 。
3、勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方 。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边) 。
数学常用勾股数
数学常用勾股数如下:
1、(3、4、5) (6、8、10)(5、12、13)
2、(8、15、17) (7、24、25)(9、40、41)
3、(10、24、26)(11、60、61)
4、(12、35、37)(48、55、73)
5、(12、16、20)(13、84、85)
6、(20、21、29)(20、99、101)
7、(60、91、109)(15、112、113)
关于常用勾股数和常用勾股数有哪些的内容就分享到这儿!更多实用知识经验,尽在 www.hubeilong.com