四边形的性质与判定 初中平行四边形的性质与判定


四边形的性质与判定 初中平行四边形的性质与判定

文章插图
大家好,小跳来为大家解答以上的问题 。初中平行四边形的性质与判定,四边形的性质与判定这个很多人还不知道,现在让我们一起来看看吧!
1、由四条线段围成的平面图形叫四边形 。
2、由规则四边形和不规则四边形组成.规则四边形:平行四边形(包括:,普通平行四边形,矩形,菱形,正方形)梯形(包括:普通梯形,直角梯形,等腰梯形)四边形的内角和和外角和均为360度依次连接四边形各边中点所得的四边形称为中点四边形 。
3、不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形 。
4、菱形的中点四边形是矩形,矩形的中点四边形是菱形 , 正方形的中点四边形是正方形,平行四边形的中点四边形是平行四边形 。
5、平行四边形的性质和判定 定义:两组对边分别平行的四边形叫做平行四边形. 性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分 . 判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形 .注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形 . 矩形的性质和判定 定义:有一个角是直角的平行四边形叫做矩形. 性质:①矩形的四个角都是直角;②矩形的对角线相等 . 注意:矩形具有平行四边形的一切性质 . 判定:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形 . 菱形的性质和判定 定义:有一组邻边相等的平行四边形叫做菱形. 性质:①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角 . 注意:菱形也具有平行四边形的一切性质 . 判定:①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形正方形的性质 定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形. 性质:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分 , 每条对角线平分一组对角 . 注意:正方形具有平行四边形、矩形、菱形的一切性质. 梯形及特殊梯形的定义 梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.) 等腰梯形:两腰相等的梯形叫做等腰梯形. 直角梯形:一腰垂直于底的梯形叫做直角梯形. 等腰梯形的性质 等腰梯形两腰相等、两底平行; 2、等腰梯形在同一底上的两个角相等; 3、等腰梯形的对角线相等; 4、等腰梯形是轴对称图形 , 它只有一条对称轴,一底的垂直平分线是它的对称轴. 等腰梯形的判定 两腰相等的梯形是等腰梯形; 2、在同一底上的两个角相等的梯形是等腰梯形; 3、对角线相等的梯形是等腰梯形. 。
【四边形的性质与判定 初中平行四边形的性质与判定】本文到此分享完毕,希望对大家有所帮助 。