矩阵相似 矩阵相似可以得出什么结论


矩阵相似 矩阵相似可以得出什么结论

文章插图
大家好,小跳来为大家解答以上的问题 。矩阵相似可以得出什么结论,矩阵相似这个很多人还不知道,现在让我们一起来看看吧!
【矩阵相似 矩阵相似可以得出什么结论】1、矩阵A与B相似, 即存在可逆矩阵P, 满足P^-1AP = B.基本结论: 相似矩阵的特征多项式相同推论: 相似矩阵特征值相同, 行列式相同, 迹也相同(此推论常用, 需记住)两个常用结论: A的行列式等于A的全部特征值之积A的迹等于A的全部特征值之和计算B的特征值: |B-λE| = -(1-λ)^2(1+λ)所以B的特征值为: 1,1,-1由A与B相似知 A的特征值为1,1,-1所以 A-2E 的特征值为 1-2=-1,1-2=-1, -1-2=-3.故 A-2E 可逆.[ A可逆的充分必要条件之一是 A的特征值都不为0 ]同样有 A-E 的特征值为: 1-1=0, 1-1=0, -1-1 = -2故 r(A-E) = 1[ 别问为什么, 会用就行, 它的秩等于它非零特征值的个数 ]所以 R(A-2E)+R(A-E) = 3+1 = 4. 。
本文到此分享完毕,希望对大家有所帮助 。