直角三角形外接圆半径公式,直角三角形内切圆半径公式什么时候学的

直角三角形的内切圆半径有什么公式【直角三角形外接圆半径公式,直角三角形内切圆半径公式什么时候学的】直角三角形的内切圆半径公式:r=(a+b-c)/2推导如下:设Rt△ABC中,∠C=90度,BC=a,AC=b,AB=c内切圆圆心为O,三个切点为D、E、F,连接OD、OE 显然有OD⊥AC,OE⊥BC,OD=OE 所以四边形CDOE是正方形 所以 。

直角三角形外接圆半径公式,直角三角形内切圆半径公式什么时候学的

文章插图
直角三角形内切圆半径公式直角三角形的内切圆的半径 r=1/2(AB+AC-BC)(公式一) r=AB*AC/(AB+以BC为斜边的三角形 1.r=1/2(AB+AC-BC)(公式一) 用的是切线的性质
内切圆半径公式直角三角形的内切圆半径r=(a+b-c)/2,其中a、b是直角边长,c是斜边长 一般三角形:r=2s/(a+b+c),其中s是三角形面积,a、b、c是三角形三边 。
另外s=根号下p(p-a)(p-b)(p-c),其中p=(a+b+c)/2。
直角三角形外接圆半径公式,直角三角形内切圆半径公式什么时候学的

文章插图
直角三角形内切圆半径公式推导是什么?三角形内切圆半径公式:r=2S/(a+b+c) 。
推导:设内切圆半径为r,圆心O,连接OA、OB、OC,得到三个三角形OAB、OBC、OAC 。
那么,这三个三角形的边AB、BC、AC上的高均为内切圆半径r 。
所以:S=S△ABC=S△OAB+S 。