有哪些勾股数组?若三个正整数 abc,满足 a2+b2=c2,则构成直接三角形三边长关系,为一组勾股数 。
有无穷多组这样的数 。
在 1≤a≤b≤c 以及 1≤a≤b≤1000 条件下,有1034组 。
具体见附图:
附:搜寻这些数所用到的fortran代码
常见的10组勾股数分别是?常用的勾股数有:(3、4、5),(5、12、13),(7、24、25),(8、15、17),(9、40、41),(10、24、26),(11、60、61),(12、35、37),(48、55、73),(12、16、20),(13、84、85) 。
勾股数的定义
勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数 。勾股数的依据是勾股定理 。勾股定理是人类早期发现并证明的重要数学定理之一 。勾股数指的是组成一个直角三角形的三条边长,三条边长都为正整数,例如直角三角形的两条直角边为a和b,斜边为c,那么两条直角边a的平方加b的平方等于斜边c的平方,那么这一组数组就叫做勾股数 。
一般把较短的直角边称为勾,较长直角边称为股,而斜边则为弦 。结合勾股数创造了勾股定理,是为了解不定方程的所有整数解而创造的定律 。勾股定理是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一 。
常用勾股数顺口溜
3,4,5:勾三股四弦五;5,12,13:5·21(12)记一生(13)等等 。下面就和我一起了解一下吧,供大家参考 。
什么是勾股数
勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数 。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a2+b2=c2) 。
又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个正整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组 。
常用勾股数顺口溜记忆
常见勾股数顺口溜:
3,4,5:勾三股四弦五
5,12,13:5·12记一生(13)
6,8,10:连续的偶数
8,15,17:八月十五在一起(17)
特殊勾股数:
连续的勾股数只有3,4,5
连续的偶数勾股数只有6,8,10
常见勾股数组合套路
1、当a为大于1的奇数2n+1时,b=2n2+2n,c=2n2+2n+1 。
实际上就是把a的平方数拆成两个连续自然数,例如:
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)
2、当a为大于4的偶数2n时,b=n2-1,c=n2+1
也就是把a的一半的平方分别减1和加1,例如:
n=3时(a,b,c)=(6,8,10)
n=4时(a,b,c)=(8,15,17)
n=5时(a,b,c)=(10,24,26)
n=6时(a,b,c)=(12,35,37)
勾股数组有哪些
定义一般地,若三角形三边长a,b,c都是正整数,且满足a,b的平方和等于c的平方,那么数组(a,b,c)称为勾股数组 。勾股数组是人们为了解出满足勾股定理的不定方程的所有整数解而创造的概念 。
直角三角形两直角边的平方和等于斜边的平方 。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2 。
;
编辑本段常用勾股数组1. (3n、4n、5n)(n是正整数)(这是最著名的一组!俗称“勾三,股四,弦五” 。古人把较短的直角边称为勾,较长直角边称为股,而斜边则为弦 。)
2. (5n、12n、13n)(n是正整数)
3. (7、24、25)
4. (8、15、17)
5. (9、40、41)
6. (10、24、26)
7. (11、60、61)
8. (12、35、37)
9. (13、84、85)
10. (15、20、25)
11. (15、112、113)
12.(17、144、145)
13. (19、180、181)
14.(20、21、29)
15.(20、99、101)
16.(48、55、73)
17.(60、91、109)
编辑本段求法设直角三角形三边长为a、b、c,由勾股定理知a^2+b^2=c^2,这是构成直角三角形三边的充分必要条件 。因此,要求一组勾股数就是要解不定方程x^2+y^2=z^2,求出正整数解 。
例:已知在△ABC中,三边长分别是a、b、c,a=n^2-1,b=2n,c=n^2+1(n>1),求证:∠C=90° 。
此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-1、n2+1 。如:(6、8、10),(8、15、17),(10、24、26) 等 。
再来看下面这些勾股数:(3、4、5),(5、12、13),(7、24、25)、(9、40、41),(11、60、61)…这些勾股数都是以奇数为一边构成的直角三角形 。由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+1、2n^2+2n、2n^2+2n+1,这可以通过勾股定理的逆定理获证 。
另外我们还可以通过理论得出推算公式为
a=m^2-n^2, b=2mn,c=m^2+n^2,
此处不作讨论 。
编辑本段基本勾股数组的特点1、两直角边为一奇一偶,斜边为奇
2、斜边与偶数边之差为平方数
3、斜边与奇数边之差为平方数的2倍
4、三条边a,b,c中,两条边循环积的4次方之和为平方数,即 a^4b^4+b^4c^4+c^4a^4=L^2
5、三条边a,b,c的8次方之和为平方数的2倍,即 a^8+b^8+c^8=2L^2
勾股数组有哪些(3n、4n、5n)n是正整数,这是最著名的一组 。俗称“勾三,股四,弦五” 。古人把较短的直角边称为勾,较长直角边称为股,而斜边则为弦 。(5n、12n、13n)n是正整数 。
举例如下:
(6、8、10)(7、24、25)(8、15、17)(9、40、41)(10、24、26)(11、60、61)(12、16、20)(12、35、37)(13、84、85)(15、20、25)(15、112、113)(17、144、145)(18、24、30)(19、180、181)(20、21、29)(20、99、101)(48、55、73)(60、91、109)
扩展资料
勾股数组的特点
1.两直角边为一奇一偶,斜边为奇
2.斜边与偶数边之差为平方数
3.斜边与奇数边之差为平方数的2倍
4.三条边a,b,c中,两条边循环积的4次方之和为平方数,即 a4b4+b4c4+c4a4=L2
5.三条边a,b,c的8次方之和为平方数的2倍,即 a8+b8+c8=2L2
参考资料来源 百度百科 勾股数组
基本勾股数有哪些基本勾股数介绍
1、常用的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等等 。
2、勾股数,又名为毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数 。勾股数的依据是勾股定理 。勾股定理是人类早期发现并证明的重要数学定理之一 。
3、勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方 。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边) 。
【勾股数组有哪些 常用勾股数组口诀】关于常用勾股数组和常用勾股数组口诀的内容就分享到这儿!更多实用知识经验,尽在 www.hubeilong.com
- cad打开文件没有工具栏
- 甲嘧磺隆有多长的药害期
- 冰粉的原料
- 有什么适合大胸女生的内衣品牌 大胸内衣
- 当初中计算机老师有什么要求么
- 第二产业包括哪些行业 第二产业有哪些行业
- 冬天喝姜汤有什么好处和坏处
- 普宁有回收雪花啤酒樽吗
- 乘风破浪的姐姐所有歌曲名
- 奶酪有哪些品牌