初三数学二次根式的知识点归纳
二次根式: 一般地,式子叫做二次根式.
注意: (1)若这个条件不成立,则不是二次根式;
(2)是一个重要的非负数,即;0.
2.重要公式:(1),(2)
3.积的算术平方根:
积的算术平方根等于积中各因式的算术平方根的积;
4.二次根式的乘法法则:.
5.二次根式比较大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小;
(3)分别平方,然后比大小.
6.商的算术平方根:,
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
7.二次根式的除法法则:
(1);(2);
(3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.
8.最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的最后结果必须化为最简二次根式.
10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.
12.二次根式的混合运算:
(1)二次根式的'混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.
第22章一元二次方程
1.一元二次方程的一般形式:0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、其中a、b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.
2.一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.
3.一元二次方程根的判别式:当ax2+bx+c=00)时,=b2-4ac叫一元二次方程根的判别式.请注意以下等价命题:
0=有两个不等的实根;=0=有两个相等的实根;0=无实根;
4.平均增长率问题--------应用题的类型题之一(设增长率为x):
(1)第一年为a,第二年为a(1+x),第三年为a(1+x)2.
(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和.
二次根式的判别式公式是什么?
△的判别式公式三种情况:
①当方程有三个不相等的实数根时,△<0;
②当方程有两个不相等的实数根时,△=0;
③当方程有一个实数根时,△>0 。
根判别式
一般来说,公式b2-4ac称为二次方程AX2+BX+C=0的根的判别式,通常用希腊字母“Δ”表示,即Δ=b2-4ac
什么时候Δ&燃气轮机;当0时,方程AX2+BX+C=0(a≠0)存在两个不相等的实根;
当Δ=0时,方程AX2+BX+C=0(a≠0)有两个相等的实根;
当Δ<;0时,方程AX2+BX+C=0(a≠0)没有实根 。
示例说明:已知一个变量关于X(X-3)(X-2)=m |的二次方程
证明:对于任意实数m,方程总是有两个不等的实根;
证明了原方程可以转化为
x2-5x+6-m |=0(非常重要的一步)
∴Δ=(-5)2-4×1×(6-|m |)
=25-24+4 |米|
=1+4 |米 。
∵| m |≥0
∴1+4 |米|>0 。
根号计算有什么知识点?
根号计算知识点如下:
1、根号混合运算:先乘方,再乘除,最后加减,有括号先算括号里面的,适当运用运算律和乘法公式 。
2、二次根式有意义的条件:被开方数≥0 。
3、非负数的积的算术平方根等于积中各因式的算术平方根的积 。
4、根式的运算主要包含根式的加减运算和根式的乘除运算以及在此基础之上的混合运算 。
5、分母有理化的关键是找到分母的有理化因式 。
初中数学二次根式概念归纳
初中数学二次根式知识点还是比较难学的,想要学好二次根式,学习方法很重要 。以下是我分享给大家的初中数学二次根式概念,希望可以帮到你!
初中数学二次根式概念
二次根式的应用主要体现在两个方面:
1.利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
2.利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题 。这个过程需要用到二次根式的计算,其实就是化简求值 。
常见考法
(1)设计一些规律探索问题提高学生的想象力和创造力;(2)联系生活实际设计一些方案探究题 。
误区提醒
(1)不能通过观察,归纳、猜想寻找出共同的规律,并运用这种规律解决问题;
(2)不会应用数学的知识解决实际生活中的问题 。
【典型例题】小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长、宽比为3:2,不知道能否裁出来,正在发愁你能帮他解决吗?
二次根式的运算主要是研究二次根式的乘除和加减.
(1)二次根式的加减:
需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变 。
注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数.
(2)二次根式的乘法:
(3)二次根式的除法:
注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.
(4)二次根式的混合运算:
先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运算的,可适当改变运算顺序进行简便运算.
注意:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,以便使运算过程简便.二次根式运算结果应尽可能化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数.
初中数学二次根式说课稿
一、说教材
本节课选自人教版九年级数学上册第二十一章二次根式第一节的内容 。“二次根式”是《课程标准》“数与代数”的重要内容 。本章是在第13章实数(13.1平方根;13.2立方根;13.3实数)的基础上,进一步研究二次根式的概念、性质、和运算 。本章内容与已学内容“实数”“整式”“勾股定理”联系紧密,同时也为以后将要学习的“锐角三角函数”、“一元二次方程”和“二次函数”等内容打下重要基础 。
二、说学情
学生已经学习了平方根(算术平方根)等有关知识,有了一定的知识基础和认识能力 。本课时及后面的知识的学习,对学生思维的严谨性、分类讨论及类比的数学思想等都有了更高的要求,如果学生在此不能很好地理解和正确地认知,将对后续的学习产生很大的影响,所以要求学生积极探究与思考,及时加以训练巩固,克服学习困难,真正“学会” 。
三、说教学目标
根据大纲的要求和教材结构内容分析,结合九年级学生的实际水平,考虑到学生已有的认知结构心理特征,本节课可确定如下教学目标:
1.知识与技能:掌握二次根式的概念,二次根式的取值范围和被开方数的取值范围
2.过程与方法:根据条件处理问题的能力及分类讨论问题的能力
3.情感态度价值观:严谨的科学精神
四、说教学重点和难点
教学重点:二次根式中被开方数的取值范围
教学难点:二次根式的取值范围
五、说教法
教学活动的本质是一种合作,一种交流 。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者 。依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,拓展学生探索的空间,体现由具体到抽象的认识过程 。为了为后续学习打下坚实的基础,例如在“锐角三角函数”一章中,会遇到很多实际问题,在解决实际问题的过程中,要遇到对二次根式进行条件约束等问题,本课适当加强练习,让学生养成联系和发展的观点学习数学的习惯 。
六、说学法
新课程标准指出:学生是学习的主体 。要让学生成为真正的主人,需要在数学教学的过程中,让老师引导学生自主思考、合作探究、共同总结,从而体现学生学习的主体地位 。本节课主要采用自主学习,合作探究,引领提升的方式,启发式、讲练结合的方法展开教学 。先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念;再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简的学习 。通过对本节课的学习,使学生们的发散性思维得以启发,学生们的观察、分析、发现问题的能力得以锻炼,学生辩证唯物主义观点得以培养 。
学好初中数学的建议
一、掌握预习学习方法,培养数学自学能力
预习就是在课前学习课本新知识的学习方法,要学好初中数学,首先要学会预习数学新知识,因为预习是听好课,掌握好课堂知识的先决条件,是数学学习中必不可少的环节.预习可以用“一划、二批、三试、四分”的预习方法.“一划”就是圈划知识要点,基本概念.“二批”就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方;“三试”就是尝试性地做一些简单的练习,检验自己预习的效果.“四分”就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习.
二、掌握课堂学习方法,提高课堂学习效果
课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;
耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结.另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;
口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;
眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;
心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极.关键是理解并能融汇贯通,灵活使用.对于老师讲的新概念,应抓住关键字眼,变换角度去理解.
三、掌握练习方法,提高解答数学题的能力
数学的解答能力,主要通过实际的练习来提高.数学练习应注意以下几点:
1.端正态度,充分认识到数学练习的重要性.实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现.
2.要有自信心与意志力.数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯.
3.要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答.解答后,还应进行检查.
4.细观察、活运用、寻规律、成技巧.
四、掌握复习方法,提高数学综合能力.
复习是记忆之母,对所学的知识要不断地复习,复习巩固应注意掌握以下方法.
1.合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习.
2.采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,形成完整的知识体系.
3.突破薄弱环节的复习方法.要多在薄弱环节上下功夫,加强巩固好课本知识,只有突破薄弱环节,才利于从整体上提高数学综合能力.
猜你喜欢:
1. 超实用的初中数学思维导图
2. 初中数学中考模拟试题及答案
3. 初中数学中考模拟真题
4. 初中数学教研组复习计划
5. 初二人教版下册二次根式数学教案
初二数学二次根式的知识点
I.二次根式的定义和概念:
1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式 。当a>0时,√a表示a的算数平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式 。√ā(a≥0)是一个非负数 。
II.二次根式√ā的简单性质和几何意义
1)a≥0
;
√ā≥0
[
双重非负性
]
2)(√ā)^2=a
(a≥0)[任何一个非负数都可以写成一个数的平方的形式]
3)
√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论 。
III.二次根式的性质和最简二次根式
1)二次根式√ā的化简
a(a≥0)
√ā=|a|={
-a(a<0)
2)积的平方根与商的平方根
√ab=√a·√b(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b>0)
3)最简二次根式
条件:
(1)被开方数的因数是整数或字母,因式是整式;
(2)被开方数中不含有可化为平方数或平方式的因数或因式 。
如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y
等;
含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等
IV.二次根式的乘法和除法
1
运算法则
√a·√b=√ab(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b>0)
二数二次根之积,等于二数之积的二次根 。
2
共轭因式
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式 。
V.二次根式的加法和减法
1
同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式 。
2
合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式 。
3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并
Ⅵ.二次根式的混合运算
1确定运算顺序
2灵活运用运算定律
3正确使用乘法公式
4大多数分母有理化要及时
5在有些简便运算中也许可以约分,不要盲目有理化
VII.分母有理化
分母有理化有两种方法
I.分母是单项式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多项式
要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b
如图
II.分母是多项式
要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b
根式的知识点
二次根式定义
如果一个数的平方等于a,那么这个数叫做a的平方根 。a可以是具体的数,也可以是含有字母的代数式 。即:若,则叫做a的平方根,记作x= 。其中a叫被开方数 。其中正的平方根被称为算术平方根 。关于二次根式概念,应注意:被开方数可以是数 ,也可以是代数式 。被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数 。
最简二次根式
最简二次根式条件:
1.被开方数的因数是整数或字母,因式是整式;
2.被开方数中不含有可化为平方数或平方式的因数或因式 。
二次根式化简一般步骤:
1.把带分数或小数化成假分数;
2.把开方数分解成质因数或分解因式;
3.把根号内能开得尽方的因式或因数移到根号外;
4.化去根号内的分母,或化去分母中的根号;
5.约分 。
二次根式性质
1. 任何一个正数的平方根有两个,它们互为相反数 。如正数a的算术平方根是,则a的另一个平方根为﹣;最简形式中被开方数不能有分母存在 。
2. 零的平方根是零,即;
3. 负数的平方根也有两个,它们是共轭的 。如负数a的平方根是 。
4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式 。
5. 无理数可用连分数形式表示,如:
6. 当a≥0时,;与中a取值范围是整个复平面 。
7.
[任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解 。
8. 逆用可将根号外的非负因式移到括号内,如(a>0) ,(a<0),﹙a≥0﹚ ,(a<0) 。
9.注意:,然后根据绝对值的运算去除绝对值符号 。
10.具有双重非负性,即不仅a≥0而且≥0 。
望采纳 。
【初中数学二次根式概念归纳 初中数学二次根式知识点总结】关于二次根式知识点和初中数学二次根式知识点总结的内容就分享到这儿!更多实用知识经验,尽在 www.hubeilong.com
- 初一下册数学知识点归纳北师大版,五四制初一下册数学知识点
- 八个字的励志句子签名,八个字的励志句子初中
- 意大利数学家巴切利介绍了八种乘法,第六种就是方格乘法 铺地锦算法
- 数学文化形考作业答案,数学文化试题及答案
- 四年级下册数学教案及反思,小学四年级上册数学教案
- 六年级上册数学口算题及答案分数,六年级上册数学口算题及答案100道
- 初一家长代表发言稿简短精要,初中家长会家长代表发言稿结束语
- 初中运动会入场词霸气押韵,初中运动会入场词50字左右
- 智慧数学手抄报的字,数学手抄报的字 内容
- 初中生共青团入团申请书格式,共青团入团申请书格式范文1000字高中