传递函数是描述线性系统动态特性的基本数学工具之一 什么是传递函数


传输函数是指零初始条件下线性系统响应(即输出)量的拉普拉斯变换(或z变换)与激励(即输入)量的拉普拉斯变换之比 。记作G(s)=Y(s)/U(s),其中Y(s)、U(s)拉普拉斯变换分别是输出和输入 。传输函数是描述线性系统动态特性的基本数学工具之一 。经典控制理论的主要研究方法-频率响应法和根轨迹法都是基于传输函数 。
【传递函数是描述线性系统动态特性的基本数学工具之一 什么是传递函数】传输函数也是积分转换的概念 。对复参数s,函数f(t)*e^(-st)在(-∞,∞)称为函数的积分f(t)拉普拉斯变换,如果是在[0,∞)内积分称为单边拉普拉斯变换,记录为F(s),这是一个复变函数 。
设置系统的输入函数是x(t),输出函数为y(t),则y(t)的拉氏变换Y(s)与x(t)的拉氏变换X(s)的商:W(s)=Y(s)/X(s)传输函数称为该系统 。
传输函数由系统的基本特性决定,与输入量无关 。在知道传输函数后,输入量可以通过输入量或根据所需的输出量来确定 。