rank函数排名公式 不重复排名函数公式

函数和复数公式与2类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)]={a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)]=a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
其他性质:
性质一:换底公式
log(a)(N)=log(b)(N)/log(b)(a)
推导如下
N=a^[log(a)(N)]
a=b^[log(b)(a)]
综合两式可得
N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以
b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N)/log(b)(a)
性质二:(不知道什么名字)
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下
由换底公式[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(a^n)/ln(b^n)
由基本性质4可得
log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}
再由换底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
--------------------------------------------(性质及推导完)
公式三:
log(a)(b)=1/log(b)(a)
证明如下:
由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1
=1/log(b)(a)
还可变形得:
log(a)(b)*log(b)(a)=1
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
?商的关系:
tanα=sinα/cosαcotα=cosα/sinα
?倒数关系:
tanα?cotα=1
sinα?cscα=1
cosα?secα=1
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
【rank函数排名公式 不重复排名函数公式】sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
一般的最常用公式有:
Sin(A+B)=SinA*CosB+SinB*CosA
Sin(A-B)=SinA*CosB-SinB*CosA
Cos(A+B)=CosA*CosB-SinA*SinB
Cos(A-B)=CosA*CosB+SinA*SinB
Tan(A+B)=(TanA+TanB)/(1-TanA*TanB)
Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
?积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
?倒数关系:
tanα?cotα=1
sinα?cscα=1
cosα?secα=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
三角函数恒等变形公式
?两角和与差的三角函数:
cos(α+β)=cosα?cosβ-sinα?sinβ
cos(α-β)=cosα?cosβ+sinα?sinβ
sin(α±β)=sinα?cosβ±cosα?sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα?tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα?tanβ)
?辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
?倍角公式:
sin(2α)=2sinα?cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
?三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
?半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
?降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
?万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
?积化和差公式:
sinα?cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα?sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα?cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα?sinβ=-(1/2)[cos(α+β)-cos(α-β)]
?和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
?其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
z =a+bi ,a,b 属于实数
z^2=a^2-b^2+2abi
z=r(cosα+i*sinα)
加法结合律: (a+bi)+(c+di)=(a+c)+(b+d)i 。

rank函数排名公式 不重复排名函数公式

文章插图
函数可以叫公式吗??三角函数的辅助角公式
求EXCEL表格名次排序的公式!=IF(A1=0,"","第"&RANK(A1,A:A,0)&"名" )
A1可以按任一个起始所在位置 。公式下拉 。
完美解决!=RANK(某指定数值,排名的范围);例如:14,20,25,27四个数中=RANK(14,范围)表未14在这四个数中的排名!用rank函数:=IF(A1=0,"",RANK(A1,A:A,0) )rank()函数
rank(number,ref,[order])
rank 函数语法具有下列参数 (参数:为操作、事件、方法、属性、函数或过程提供信息的值 。):
number必需 。需要找到排位的数字 。
ref必需 。数字列表数组或对数字列表的引用 。ref 中的非数值型值将被忽略 。
order可选 。一数字,指明数字排位的方式 。
如果 order 为 0(零)或省略,microsoft excel 对数字的排位是基于 ref 为按照降序排列的列表 。
如果 order 不为零,microsoft excel 对数字的排位是基于 ref 为按照升序排列的列表 。你先指定区域,再点数据-排序嘛!
rank函数排名公式 不重复排名函数公式

文章插图
excel中排名的函数是什么rank()是美式排名,(参考值重复时,名次会跳号)
用组合公式也可以做出中国式排名(名次不会因参考值重复而跳号)
具体用法网上很多ABC
姓名分数名次
张三60=RAnk(B2,B2:B20)
李四80下拉,将(B2:B20)锁定,
就OKRANK(A1,$A$1: $A$20)
记住后面一定要固定 。。。在Microsoft Office Excel中
RANK函数能实现将指定区范围内的数据按升序或降序排名.
调用公式格式:=RANK(number,ref,order)
Number为需要找到排位的数字 。
Ref为数字列表数组或对数字列表的引用,Ref 中的非数值型参数将被忽略 。
Order为一数字,指明排位的方式 。
如果 order 为 0(零)或省略,对数字的排位是基于 ref 为按照降序排列的列表,
即0或省按降序排名,非0按升序排名.
例:将A1:A100内的数据从高到低排名,排名结果存放在对应的B1:B100中
第1步 在B1中使用公式:=RANK(A1,$A$1:$A$100,0)
第2步用下拉方法在B2:B100中填入对应公式即可RANK()