连续且可导的条件

【连续且可导的条件】连续且可导的条件:1、函数在该点的去心邻域内有定义 。2、函数在该点处的左、右导数都存在 。3、左导数=右导数注:这与函数在某点处极限存在是类似的 。
扩展资料
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数 。若某函数在某一点导数存在,则称其在这一点可导 , 否则称为不可导 。然而,可导的函数一定连续;不连续的函数一定不可导 。
对于可导的函数f(x),xf'(x)也是一个函数 , 称作f(x)的导函数(简称导数) 。寻找已知的函数在某点的导数或其导函数的'过程称为求导 。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则 。
反之,已知导函数也可以倒过来求原来的函数,即不定积分 。微积分基本定理说明了求原函数与积分是等价的 。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念 。